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A B S T R A C T

Soil degradation by water is a serious environmental problem worldwide, with specific climatic factors being the
major causes. We investigated the relationships between synoptic atmospheric patterns (i.e. weather types, WTs)
and runoff, erosion and sediment yield throughout the Mediterranean basin by analyzing a large database of
natural rainfall events at 68 research sites in 9 countries. Principal Component Analysis (PCA) was used to
identify spatial relationships of the different WTs including three hydro-sedimentary variables: rainfall, runoff,
and sediment yield (SY, used to refer to both soil erosion measured at plot scale and sediment yield registered at
catchment scale). The results indicated 4 spatial classes of rainfall and runoff: (a) northern sites dependent on
North (N) and North West (NW) flows; (b) eastern sites dependent on E and NE flows; (c) southern sites de-
pendent on S and SE flows; and, finally, (d) western sites dependent on W and SW flows. Conversely, three
spatial classes are identified for SY characterized by: (a) N and NE flows in northern sites (b) E flows in eastern
sites, and (c) W and SW flows in western sites. Most of the rainfall, runoff and SY occurred during a small number
of daily events, and just a few WTs accounted for large percentages of the total. Our results confirm that
characterization by WT improves understanding of the general conditions under which runoff and SY occur, and
provides useful information for understanding the spatial variability of runoff, and SY throughout the
Mediterranean basin. The approach used here could be useful to aid of the design of regional water management
and soil conservation measures.

1. Introduction

General climatic conditions, particularly precipitation, are one of
the most important factors that trigger soil degradation. The seminal
paper of Langbein and Schumm (1958) identified a complex non-linear
relationship of specific sediment yield with annual precipitation, based
on the link between moisture conditions and plant cover. Thus, a rapid
rise in sediment yield occurs with increasing rainfall in regions that
have an annual rainfall of 100–500mm and little protection by vege-
tation. In contrast, if the mean annual precipitation is greater, the
presence of a dense plant cover decreases sediment yield. Further ex-
amination of this relationship by Walling and Kleo (1979) showed that
the Mediterranean climatic zone, together with monsoonal and semi-
arid areas, is especially vulnerable to soil degradation and water ero-
sion. They proposed several explanations. First, the mean annual pre-
cipitation in Mediterranean regions is relatively low, and this leads to
dispersed or low-density plant cover. Second, the Mediterranean

climate has high spatial and temporal variability, with extremely in-
tense rainstorms that can increase soil erosion and sediment avail-
ability. Third, human activities further compromise the vulnerability of
these landscapes (Grove and Rackham, 2003; García-Ruiz et al., 2013).
Therefore, identifying the environmental factors that control the spatial
and temporal patterns of rainfall, runoff, erosion and sediment yield in
Mediterranean regions is important for designing effective regional
water and soil conservation measures.

There has been extensive research on soil erosion throughout the
Mediterranean basin in the past 3 decades (Kosmas et al., 1997; García-
Ruiz et al., 2013). This research has examined study sites with different
physiographic features, soil types, land uses and cover management
practices on different spatial scales (Gallart et al., 2013; Nadal-Romero
et al., 2013). Most studies conclude that seasonal rainfall regimes
(climate conditions) control runoff, soil erosion and sediment transport
(García-Ruiz et al., 2013), and that a small number of annual events are
usually responsible for soil erosion (González-Hidalgo et al., 2007).
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Likewise, the majority of the sediment load in Mediterranean rivers is
also carried in a small fraction of the time, clearly influenced by the
availability of sediment (i.e. López-Tarazón et al., 2010). However,
there has been no synthetic analysis of how climate conditions influ-
ence runoff, soil erosion and sediment yield across the Mediterranean
basin.

Previous studies in the Mediterranean basin have examined the
spatial and temporal distribution of precipitation defining the weather
conditions under which they occur, also named weather types (WTs)
(Ramos et al., 2015). This integrative approach is a well-established
methodology, using daily synoptic conditions according to the surface
pressure field and identifies the main direction of surface wind. Thus,
each WT compiles daily information on the various origins and char-
acteristics of air masses responsible for generating rainfall and runoff
leading to erosion and sediment yield.

There have been several climate studies analyzing the relationships
of WTs to different climate phenomena, such as teleconnection indices
(Navarro-Serrano and López-Moreno, 2017), spatial distribution of
precipitation (Fernández-González et al., 2011; Hidalgo-Muñoz et al.,
2011; Cortesi et al., 2014; Fernández-Raga et al., 2016), and tempera-
ture (Peña-Angulo et al., 2016). Other studies have examined the link
between WTs and natural hazards, such as landslides, floods and hy-
drological droughts (Messeri et al., 2015; Teale et al., 2017), and the
distribution and occurrence of forest fires (Trigo et al., 2016; Ruffault
et al., 2016, 2017; Rodrigues et al., 2019). Other research has examined
the relationships of WTs with atmospheric contaminants, human health
and pathologies (Santurtún et al., 2014; Royé et al., 2016; Liao et al.,
2017), and air quality (Collaud-Coen et al., 2011). Therefore, the WT
has been proved a useful tool in understanding the relationship between

climate and many connected processes. However, information on the
relationships of different WTs with runoff, soil erosion, and sediment
yield is scarce.

Wilby et al. (1997) found that historical changes in the frequency of
winter cyclonic WTs could account for a significant proportion of the
variation in sediment yield in rivers of the United Kingdom. In addition,
Foster and Lees (1999) found that long-term trends in sediment yield of
large catchments in the United Kingdom were linked to changes in the
occurrence of specific WTs. In northwest Spain, Fernández-Raga et al.
(2010) concluded that WTs with a western component produced most
of the precipitation with high kinetic energy. Recently, Tylkowski
(2017) and Montreuil et al. (2016, 2017) analyzed coastal erosion in
the Polish Baltic and Belgian coasts, respectively, concluding that only a
few atmospheric conditions are responsible for heavy storm surge and
large percentages of coastal erosion. All of these studies indicate that
research into WTs holds great promise for finding the relationship be-
tween geomorphological processes and specific atmospheric patterns.

The main objective of this research was to analyze the relationships
between rainfall, runoff, soil erosion, and sediment yield (SY, hereafter
used to refer both to soil erosion measured at plot scale and sediment
yield registered at catchment scale) with WTs throughout the
Mediterranean basin. We compiled the most complete database for the
area containing information on rainfall, runoff, and SY at high temporal
resolution (event scale) from experimental plots and catchments. This
study aims to progress beyond previous analyses by Nadal-Romero et al.
(2014, 2015), and to pioneer the use of collective efforts aimed at un-
derstanding hydrological and erosion dynamics in the Mediterranean
region (Merheb et al., 2016; Taguas et al., 2017).

Fig. 1. a) Locations of study sites (plots and catchments) within the Mediterranean basin; b) Grid points from the National Center for Atmospheric Research (NCAR)
data set (SLP NCEP-NCAR).
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2. Materials and methods

2.1. Database creation

2.1.1. Rainfall, runoff and sediment yield
A database of rainfall events with hydrological and SY information

was compiled from a network of experimental plots and catchments
(< 50 km2) throughout the Mediterranean basin. This information was
collected by research groups from several universities and research
institutes, with most financial support provided by the European
Commission, with further aid from national and regional governments.
The data set included information from 68 sites, 28 experimental plots
and 40 catchments, referenced to 182 case studies, and from 9 coun-
tries: Morocco, Portugal, Spain, France, Italy, Tunisia, Slovenia, Greece
and Israel (Fig. 1a and Fig. 7 in Supplementary Material). The number
of study sites varied greatly among countries, and most of the data came
from Spain. In total, 22,458 rainfall events between 1985 and 2015
were entered in the database. Fifty-seven of the study sites (84%) had
data on SY.

The datasets for each site differed in the duration of the record (1 to
29 years), the size of the study area (a few m2 to 50 km2), and land use
and land cover (Table 1). 62% of the datasets included records for more
than 5 years, and 41% for 10 years or more. Only 10% of the datasets
covered less than 3 years. Likewise, 67% contained over 50 events, and
50% more than 100 events. Therefore, an inter-comparison of different
time periods, from 1988 to 2015 (Table 1), was performed to gain a
broad assessment of Mediterranean environmental characteristics. This
is similar to the procedures of previous research that examined these
global characteristics (García-Ruiz et al., 2015; Panagos et al., 2017).

2.1.2. Weather types
The classification of daily WTs over the Mediterranean region relies

on the daily sea level pressure dataset from NCEP/NCAR 40-year
Reanalysis Project (Kalnay et al., 1996) for the period 1985–2015. We
used the WT classification proposed by Jenkinson and Collison (1977),
based on the original work of Lamb (1972), and an approach suggested
by Jones et al. (1993) and Trigo and DaCamara (2000). Briefly, for each
grid cell and daily record, a WT is calculated by a set of indices that take
into account the direction and vorticity of the geostrophic flow of the
nearest 22 NCAR pressure points. The result (i.e. the WT for day n) is
then assigned to the study site according to location (Fig. 1b).

In the present research, the 26 WTs of the original classification
were aggregated into 10 types, by combining the original, pure direc-
tional, and hybrid types: Anticyclonic (A) and Cyclonic (C), and 8 di-
rectional types, North (N), Northeast (NE), East (E), Southeast (SE),
South (S), Southwest (SW), West (W) and Northwest (NW).

2.2. Database analysis

The analysis of WTs was performed across the Mediterranean basin
according to the NCEP Re-analysis grid resolution, and final WT clas-
sification was assigned to the different local study sites, depending on
their location (see Fig. 1b). The rainfall, runoff, and SY were related to
the daily WTs estimated in each site. In that respect, WT evaluation is
spatially independent, but based on sea level pressure data from NCEP
Re-analysis (i.e. the same day can be classified as northerly or southerly
WTs in different study sites). Each of the 22,458 daily events was as-
sociated with a WT type for individual sites. For each site, the per-
centage of total rainfall, runoff and SY produced under each WT was
estimated. A Principal Component Analysis (PCA) was used to sum-
marize and classify these data (Everitt and Horton, 2011). The 8 di-
rectional WTs were considered as variables, and the percentages of
rainfall, runoff, and SY associated with each WT at each site were
considered observations (Cyclonic (C) and Anticyclonic (A) WTs were
discarded from the PCA analysis which was based only on directional
WTs). Each PC was selected according to the percentage of the total
variance explained, and interpreted from its correlation with the dif-
ferent WTs. The results of the PCA established spatial patterns of
rainfall, runoff and SY and their relationships with WTs in the Medi-
terranean basin (based on the loadings from the PCA). All statistical
analyses were carried out using R software (R, version 3.2.3) (R
Development Team Core 2013). The results were divided into four sub-
sections describing the relationship of WTs with rainfall, runoff and SY.
In each sub-section, the spatial distribution of the association of WTs
with hydro-sedimentary variables was determined, with grouping into
classes defined by the PCA results. For each distribution class, three
representative study sites were selected to show the total distribution of
WTs (including A and C). Detailed results for the 68 sites examined in
this study are provided as Supplementary Material (Figs. 9–19). At the
end of the results section, we present 6 examples showing the re-
lationships of daily WTs with rainfall, runoff, and SY at specific sites
(synoptic situations).

3. Results

The PCA analysis showed the location of the 8 directional WTs in
the factor space for rainfall, runoff and SY (Fig. 2). For rainfall and
runoff data, all study cases clearly separate these WTs, but groups of
WTs were not as strongly defined for the SY data. Fig. 8 of the
Supplementary Material shows the distribution of the different study
sites in the factor space.

3.1. Rainfall classes

PC1 accounted for 40% of the total variance, and had significant

Fig. 2. PCA components for rainfall, runoff and sediment yield.
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Fig. 3. Spatial distribution of the relationship of rainfall with WTs in the Mediterranean basin, indicating the presence of 4 classes: northern (class 1), eastern (class
2), western (class 3), and southern (class 4). The total frequency of rainfall events associated with different WTs is shown for 3 representative locations in each class.
Northern sites: Barrendiola, Augeniki, Marchamalo; Eastern sites: Abanilla, Slovenia, Porta Coeli; Western sites: Israel, Corbeira, Araguás; Southern sites: Laval,
Vernega Bosc, Almachar. Please note, that different scales are included.
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positive correlations with E and NE WTs, and significant negative cor-
relations with W and SW WTs. PC2 accounted for 19% of the total
variance, and showed significant positive correlations with the N and
NW WTs, and significant negative ones with the S and SE WTs. The
contribution of the directional WTs to total rainfall differed notably
among sites (Table 3 in the Supplementary Material). Thus, we grouped
the study sites into 4 classes based on their distribution in the PCA
plane (Fig. 3).

The first class encompassed sites with predominantly NW and N
WTs (n= 17). In most of these sites, these 2 WTs accounted for more
than 25% of total rainfall (mean: 31.2%, Table 2), and for more than
45% of rainfall for Añarbe and Latxaga (Spain) (Table 3 in the
Supplementary Material and Fig. 3). This class included sites in the
Basque Country and Navarre regions of northern Spain, as well as those
in the Ebro Valley and Pre-Pyrenees (Spain), northeastern Tunisia, Si-
cily (Italy), and Crete (Greece).

The second class contained sites with predominantly E and NE WTs
(n=21), which accounted for 44% of total rainfall (Table 2). In some
of the sites of this class, these WTs produced more than 55% of the total
rainfall (e.g. Abanilla in Spain and Slovenian Istria) (Table 3 and Fig. 3).
The sites were located along the Spanish Mediterranean coast, Morocco,
and Slovenia (Fig. 3).

The third class included those sites in which rainfall was dominated
by W and SW WTs (n= 22), accounting for 43% of total rainfall
(Table 2). In some cases, such as Idanha (Portugal), these WTs produced
up to 70% of the total rainfall (Table 3). Most of the sites in this class
were on the western side of the Mediterranean basin (Atlantic sites),
Andalusia and the Central Pyrenees (Spain), the Italian Peninsula and
Sicily (Italy), Crete (Greece) and Israel (Fig. 3).

The fourth class was a specific area in which most rainfall was as-
sociated with S and SE WTs (n= 8; Fig. 3). The S and SE WTs accounted
for more than 40% of the total rainfall (Table 2), with greater influence
from southerly flows. Most of the southern sites were around the Gulf of
Lion (Spain and France) (Fig. 3).

3.2. Runoff classes

PC1 accounted for 32% of the total variance, and had significant
positive correlations with the E and NE WTs, and significant negative
correlations with the W and SW WTs. PC2 comprised 19% of the total
variance, and showed significant positive correlations with the N and
NW WTs, and significant negative ones with the S and SE WTs. The
contribution of runoff differed among sites and WTs (Table 3 in the
Supplementary Material). We grouped the study sites into 4 classes
based on their distribution in the PCA plane (Fig. 4). Notably, the sites
included in each runoff class were not necessarily coincident with those
in each rainfall class, but spatial distributions were similar.

The NW and N WTs accounted for almost 40% of total runoff
(n= 16) (Table 2), and up to 55% in some cases (e.g. Latxaga and
Barrendiola in Spain; Fig. 4 and Table 3). Locally, and only at 3 sites,
the C WT had a strong influence (e.g. almost 40% in Avgeniki, Greece;
Fig. 4). The spatial distribution of sites in this class was similar to that of
the first rainfall class: northern Spain (Basque Country and Navarre),
some sites in the central Iberian Peninsula (IP), Málaga, Tunisia, Sicily
(Italy) and Crete (Greece) (Fig. 4).

The E and NE WTs accounted for about 45% of total runoff in the
second class (n= 21), and up to 70% in some cases (e.g. Montnegre,
Albaladejito and Abanilla in Spain; Table 3 and Fig. 4). The spatial
distribution of the sites in this class was similar to that of the second
rainfall class: the Mediterranean coast of the IP, Morocco and Slovenia
(Figs. 3 and 4).

The W and SW WTs accounted for 52% of total runoff in the third
class (n= 18, Table 2), and more than 75% in Rinconada, Villamor and
Coimbra (Table 3 in the Supplementary Material). These 2 WTs pro-
duced more than 40% of total runoff in most sites, with the exception of
Mesara (Greece) and Carrasquero (Spain), where the C WT caused a

large amount of runoff (Supplementary Fig. 16). The sites in this class
were in the western Mediterranean (Atlantic sites), and in Andalusia,
the Pyrenees, Sicily, Crete and Israel, similar to the pattern for the third
rainfall class (Fig. 4).

The S and SE WTs accounted for 33% of total runoff (Table 2) in the
fourth class (n= 12), and up to 50% in Roujan (France), Venergà, and
Almachar (Spain) (Table 3 and Fig. 4). However, the contribution of the
predominant WTs varied greatly among sites (coefficient of variation:
68%). The spatial distribution of sites in this class was similar to that of
the fourth rainfall class: southern and northern sites of the IP and
central Italy (Fig. 4).

3.3. Erosion and sediment yield classes (SY)

PC1 accounted for 33% of the total variance and had significant
positive correlations with the N and NE WTs, and significant negative
ones with the W and SW WTs. PC2 was responsible for 21% of the total
variance, and had a significant positive correlation with the E WT.
Notably, the SY classes had higher variability than those for rainfall and
runoff (Fig. 5 and Table 2). We grouped the study sites into 3 classes
based on their distribution on the PCA plane (Fig. 2c).

The N and NE WTs accounted for 48.6% of the total SY in the first
class (n= 17, Table 2). In addition, the NE WT comprised more than
90% of the total SY at the Moroccan site (Rheraya), and both WTs
amounted to approximately 40% of the total SY in all cases (Table 2).
The sites in this class were in Morocco, the eastern IP (including Mal-
lorca), Sicily (Italy) and Crete (Greece) (Fig. 5).

The E WT accounted for 25% of the total SY in the second class
(n= 16), but this rose to 50% in El Cautivo, Abanilla, Ardal, Santomera
and Venta del Olivo (all on the south-east Spanish Mediterranean coast)
(Fig. 5). In addition, the C WT had a strong influence in 3 cases (Ma-
laga, Burete, and Porta Coeli in Spain, Fig. 5). These sites were in the
eastern IP (Fig. 5), Slovenia, Tunisia and Italy.

The W and SW WTs accounted for 40% of SY in the third class
(n= 24), and 60–80% in the most western Mediterranean sites
(Portugal and Galicia [Spain], Table 3 and Fig. 5). These 2 WTs caused
approximately 40% of the total SY in Israel.

3.4. Synoptic patterns

Fig. 6 shows six representative examples of daily atmospheric pat-
terns throughout the Mediterranean basin, obtained from NCEP Re-
analysis, and the corresponding WTs of selected sites where an event
was registered on a chosen day.

Fig. 6a presents an event on September 11, 1996, a date when E
flows affected all sites where rainfall, runoff or SY were recorded

Table 2
Relative contributions of the different WTs to total rainfall, runoff, and SY at the
different study sites (plots and experimental catchments) within each spatial
class, based on PCA analysis.

PCA classes Environmental
variables (%)

mean standard
deviation

Coefficient of
variation

Max

Northern
(NW, N)

rainfall 31.2 11.5 37 51.1
runoff 38.6 15.6 41 64.7
SY 48.6 16.1 33 92.3

Eastern (E,
NE)

rainfall 43.8 14.7 34 69.0
runoff 45 21.2 47 72.7
SY 25.1 21.5 86 60.7

Southern
(SE, S)

rainfall 42.7 12.1 28 58.0
runoff 32.9 22.2 68 82.0
SY – – – –

Western
(SW, W)

rainfall 43.3 15.2 35 71.9
runoff 52.2 15.4 30 80
SY 40.3 19.8 49 83.1
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Fig. 4. Spatial distribution of the relationship of runoff with WTs in the Mediterranean basin, indicating the presence of 4 classes: northern (class 1), eastern (class 2),
western (class 3), and southern (class 4). The total frequency of runoff events associated with different WTs is shown for 3 representative locations in each class.
Northern sites: Barrendiola, Augeniki, Marchamalo; Eastern sites: Abanilla, Slovenia, Porta Coeli; Western sites: Israel, Corbeira, Araguás; Southern sites: Laval,
Vernega Bosc, Almachar. Please note, that different scales are included.
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(Albaladejito, La Concordia, El Cautivo and Porta Coeli in Spain), or NE
(Santomera). The isobaric configuration shows a low-pressure system
located between the IP and North Africa, and the resulting predominant
wind directions were east–west and northeast-southwest, accordingly.

The second synoptic chart (Fig. 6b) presents an event on February
19, 2003 and shows a low-pressure system in the northwest of the IP.
The 1010 mb isobar includes the Western Mediterranean, causing W
and S flows in the Gulf of Lion (Roujan and Vernegà).

The third synoptic chart (Fig. 6c) shows a low pressure system

located in the centre of the IP on March 29, 2004, that generated
synchronic responses in the Mediterranean basin. E-NE flows were re-
corded on the Spanish Mediterranean side (La Concordia, Porta Coeli,
Navalón, and Sa Vall), with SE flows in the Ebro basin (Bárdenas, La
Puebla, Lanaja, and Mediana). On the other hand, the data for Morocco
indicated that the response was due to N/NW flows.

The fourth chart (Fig. 6d), recorded on October 16, 2009, shows the
synoptic configuration related to central and eastern sites of the Med-
iterranean region, in which a low pressure system between southern

Fig. 5. Spatial distribution of the relationship of sediment yield with WTs in the Mediterranean basin, indicating the presence of 3 classes: northern (class 1), eastern
(class 2), and western (class 3). The total frequency of events producing sediment yield associated with different WTs is shown for 3 representative locations in each
class. Northern sites: Barrendiola, Augeniki, Marchamalo; Eastern sites: Abanilla, Slovenia, Porta Coeli; Western sites: Israel, Corbeira, Araguás.
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Italy and Greece produced mostly S WTs in Greece and N/NW flows in
Tunisia.

The fifth chart (Fig. 6e), recorded on February 9, 2010, shows a new
configuration related to the Western Mediterranean basin, in which a
deep low pressure system around the Balearic Sea gave rise to W and S
flows in Tunisia and Sicily.

The last chart (Fig. 6f), recorded on October 10, 2010, shows high
variability. There was a low-pressure system in the IP and the eastern
Mediterranean basin, but not affecting North Africa. Different WT
patterns were recorded in many different sites. C patterns were ob-
served in the Pyrenees and the Gulf of Lion, such as Araguás, Vernegà,
Ca L’Isard, Can Vila (Spain) and Roujan (France); N WTs were recorded
in Oskotz (Navarre, Spain) and Burete (Murcia, Spain); and W WTs
were observed in the western sites of the IP (Corbeira in Galicia and
Conchuela in Andalucía). There was also an event in the Eastern
Mediterranean (Agia Varvara, Greece), although the synoptic situation
did not allow the classification used to determine the S/SE flows in
detail.

Synoptic charts are affected by the synchrony of the recorded data,
and must therefore, be interpreted with caution. However, the charts
shown here indicated that the disturbances associated with low-pres-
sure systems were generally responsible for most responses in the
Mediterranean basin.

4. Discussion

During the last three decades, many studies of experimental plots
and catchments throughout the Mediterranean basin have quantified
the factors that are most responsible for runoff, soil erosion and SY
(Kosmas et al., 1997). There is now a huge amount of information on
how of these parameters relate to climatic factors, plant cover, land use
and land management practices (García-Ruiz et al., 2008; Taguas and
Gómez, 2015; Rogger et al., 2017); also on the temporal and spatial
variations of these processes (Boix-Fayos et al., 2005, 2006, 2007;
Vanmaercke et al., 2012, 2015; García-Ruiz et al., 2015; Merheb et al.,
2016). In this study, we tried to go beyond these previous studies by
compiling the largest data set available for the Mediterranean basin to
analyze the relationships between daily rainfall, runoff, and SY with
WTs. This was possible only due to the efforts of numerous research
groups from several universities and research institutes in 9 Medi-
terranean countries, with the Iberian Peninsula being the most widely-
represented region (Fig. 1 and Fig. 7 Supplementary Material). Most of
the sites are located in Spain while fewer are in France, Italy and other
countries (Morocco, Tunisia, Slovenia, Greece and Israel).

The scarcity of information in central and far east of the
Mediterranean basin did not enable us to conduct a global detailed
analysis, and in that respect, the larger representation of Spanish study

Fig. 6. Synoptic maps showing sites where an event occurred and WT information for the day and site. a) September 11, 1996, b) February 19, 2003, c) March 29,
2004, d) October 16, 2009, e) February 9, 2010, and d) October 10, 2010.
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sites could be understood as a limitation of the data set. A similar si-
tuation occurred to García-Ruiz et al. (2013) who carried out a review
on erosion in Mediterranean landscapes based on more than 650 pub-
lished studies, from which more than 60% came from Spanish sites.
Nevertheless, we consider that the over-representation of sites in Spain
is counterbalanced by the fact that each one has been analyzed in-
dividually and the results not extrapolated to those areas with no or
little data. Notwithstanding this limitation, the present study provides
interesting results, showing clear relationships between WTs and rain-
fall, runoff, and SY, as well as clear spatial patterns throughout the
Mediterranean basin (each case can be individually analyzed in
Figs. 9–19). Despite the inherent limitations associated with the avail-
able dataset, we believe that the spatial patterns emerging from this
analysis are of interest, even more so because they allow for a discus-
sion on the influence of WTs on the studied variables. Additional data,
especially SY information from the less well-represented regions in the
dataset, would be essential to confirm the extent and influence of WTs
on the identified rainfall, runoff, and SY classes.

Recent spatial studies have highlighted the importance of analyzing
the relationships of environmental variables with atmospheric circula-
tion patterns (Ramos et al., 2015). However, there are no previous
global analyses of the effects of atmospheric conditions in the Medi-
terranean basin on rainfall, runoff and SY. Our analysis allowed re-
presentative study sites around the Mediterranean basin to be identified
according to synoptic weather patterns. Our results show the presence
of 4 homogeneous classes for rainfall and runoff, and 3 classes for SY. In
general, the spatial patterns of the rainfall and runoff classes were si-
milar, with only minor variations. The first class (N WTs) covered
mainly the Basque and Navarre sites, some study areas within the
Iberian Peninsula, and others in Italy (Sicily) and Greece (Crete). The
second class (E WTs) mostly corresponded to eastern Spanish Medi-
terranean sites. The third class (S WTs) contained the fewest sites,
mostly in the Gulf of Lion (Spain and France) and displayed high
variability in the relationships. The fourth class (W WTs) corresponded
to western Mediterranean sites in Portugal and Spain, the Central
Pyrenees and Israel. However, there were only 3 classes for SY: sites
dominated by N and NE WTs, those with E flows, and ones with W and
SW flows. On the other hand, there was greater variability for SY than
rainfall and runoff, probably due to its more diverse and complex
causative factors.

Similar spatial patterns were obtained in different studies analyzing
several environmental variables. For example, Gámiz-Fortis et al.
(2011) analyzed the spatial and temporal streamflow variability of the
Ebro River Basin (Spain) and its association with large-scale patterns of
atmospheric circulation. These authors identified 3 spatial patterns: the
Basque-Cantabrian region, the southern-Mediterranean area, and the
Pyrenees. Ramos et al. (2014) studied the relationships between WTs
and daily rainfall in the IP, and identified four areas: the northern
Cantabrian coastland, the Central-southwest, the Mediterranean coast-
land, and the Ebro Basin. Nevertheless, rainfall events are not only
linked to synoptic scale atmospheric circulations, as has been demon-
strated by various authors in climatological studies (Cortesi et al., 2014;
Peña-Angulo et al., 2016). Local factors, such as convective processes,
orography and distance to the sea, could play a major role in the fre-
quency of rainfall and runoff events and in the extent of spatial pat-
terns. For example, the geographical layout of the main mountain
chains (i.e. Pyrenees, Alps) could be one of the most important factors
promoting the spatial patterns, and could help to establish sharply
delimited areas according to specific effects from WTs.

PCA groups were found to characterize spatial patterns at
Mediterranean scale, although individual WTs displayed some varia-
tions between sites. Consequently, an interesting finding of our study is
that a high percentage of rainfall, runoff and SY events occurred for a
small number of WTs, representing atmospheric conditions that are
often rare. For example, in Idanha (Portugal) 60.6% of SY occurred
during an SW WT, and in Rheraya (Morocco) 91.3% of SY occurred

during an NE flow. These results are similar to those of Pattison and
Lane (2012), who indicated that only 5 WTs accounted for 80% of the
recorded extreme events in the River Eden (United Kingdom). These
results also agree with those of Ramos et al. (2014), who concluded that
a high percentage of monthly rainfall (about 70%) occurred during only
7 WTs. Additionally, studies elsewhere in the world confirmed that a
small number of extreme events generate most rainfall, runoff and SY
(López-Bermúdez, 1990; Martínez-Mena et al., 2001; González-Hidalgo
et al., 2007). Related to these results, changes in the frequency of these
WTs are bound to have a significant impact on the hydrological and
erosion response and the export of sediment. These results may provide
an insight into the development of water planning and soil conservation
measures. Over time, the Mediterranean basin has become drier and the
rainfall patterns more erratic. The insights from the present study might
help to evaluate the relationships of atmospheric conditions with
rainfall, runoff and SY around the Mediterranean basin in a context of
global change.

Furthermore, this study shows that the predominance of one WT for
rainfall does not mean that this WT also predominates for runoff or SY
(Table 3 in the Supplementary Material). Indeed, the patterns obtained
suggest that rainfall, runoff and SY had different responses to different
WTs, probably as a consequence of the non-linear relationships among
these variables, especially for SY events. These results agree with those
of previous studies in Mediterranean areas (López-Tarazón et al., 2010;
Rodríguez-Caballero et al., 2014; Hueso-González et al., 2015), and
illustrate the complexity of water and sediment dynamics. This non-
linearity could be at least partially explained by the availability of
detached material that can be readily eroded, and the existence of
different sediment sources, which in turn depend on various processes
(e.g. previous weathering processes and rainfall conditions) influencing
sediment availability and SY.

The analyzed dataset comprises a wide range of physiographical and
geomorphological conditions (topography, soils, plant cover) and
length of data records (see Table 1). The latter can lead to biased re-
sults, because the minimum record length is an issue that has not yet
been resolved in geomorphology studies. Most authors claim that short
temporal series present compressed variance (Kirkby, 1987).
Wischmeier and Smith (1978) stated that “care must be taken to ensure
that the duration is sufficient to account for cyclical effects and random
fluctuations in uncontrolled variables whose effects are averaged in the
USLE factor values”. The time frame varies from author to author and
usually is expressed in years (Lane and Kidwell, 2003; Ollesch and
Vacca, 2002). However, González-Hidalgo et al. (2012) suggested in-
cluding a minimum number of 100 events instead of years to avoid the
effects of maximum erosion events. In the present study, the records
vary between 9 and more than 800 events spanning from 1 to 22 years.
Furthermore, the reliability of the dataset is guaranteed because more
than 67% of the study sites recorded more than 50 events, and 50% of
sites included over 100 events. In this respect, the range of the dataset
ensures the reliability of results and, regardless of the spatial distribu-
tion of the study sites, the global conclusions are not affected by the
effect of maximum events. However, a few WTs are responsible for a
high percentage of runoff and SY, varying at spatial level.

Characterization of the relationships of rainfall, runoff, and SY with
WTs is crucial for understanding hydrological and SY dynamics in the
Mediterranean basin. In fact, improving our understanding of hy-
drology and soil erosion dynamics is a strategic research step, essential
for the development of protection and management policies, with
adaptations to the distinct environments within the Mediterranean
basin. However, we acknowledge that many other environmental fac-
tors related to runoff and soil erosion dynamics are outside the scope of
the present study, such as land use/land cover, topography, weathering
dynamics, antecedent conditions such as soil moisture, and the dis-
tribution of rainfall and rainfall intensity within storms. We consider
that further research is needed to better understand the relationships of
rainfall, runoff, and SY with WTs. This is particularly important,
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because a small increase in the frequency of certain WTs may lead to
more frequent events with high runoff volumes and greater SY.
Therefore, future research should focus on: (i) analyzing the temporal
and seasonal variability of the relationships of WTs with different
hydro-sedimentary variables, (ii) evaluating extreme events and their
relationships with different WTs (Hidalgo-Muñoz et al., 2011), and (iii)
studying the effect of changes in the frequencies of different WTs.

5. Conclusions

This study investigated the relationships of three hydro-sedimentary
variables — rainfall, runoff and SY — with different WTs, and their
spatial variability in the Mediterranean basin. Compilation and analysis
of this very large dataset required the cooperation of a sizable group of
scientists from 9 Mediterranean countries, whose common aim was to
advance knowledge of rainfall, runoff, and SY dynamics throughout the
Mediterranean basin. Thus, the prime innovation of the present work
concerns the compilation of this Mediterranean database, which has
taken information from 68 study sites (plots or catchments) and 22,458
events. The results demonstrate that WTs influence to a different extent
rainfall, runoff, and SY, and that the relationships of these hydro-se-
dimentary variables with WTs have distinct spatial patterns throughout
the Mediterranean basin. Moreover, our study indicated that the sy-
noptic WT classification can be effectively used to study hydrological
and SY responses in Mediterranean areas, and that this is a valuable
new tool for studies of hydrological responses, soil erosion, and sedi-
ment delivery.

In addition to these, there are several specific insights from this
study:

(i) A small number of WTs are responsible for most rainfall, runoff,
and SY in Mediterranean environments.

(ii) For each site, different WTs are associated with the greatest rain-
fall, runoff, and SY, indicating a non-linear relationship between
these hydro-sedimentary variables.

(iii) There were 4 spatial classes of sites that had similar rainfall and
runoff relationships with WTs: (a) northern sites (including the
Basque country and Navarre in Spain, inland of the Iberian
Peninsula, and some sites in Sicily and Crete), which depend on N
and NW flows; (b) eastern sites (including the eastern Iberian
Peninsula, Morocco, and Slovenia), which depended on E and NE
flows; (c) southern sites (located around the Gulf of Lion but with
high variability) which depended on S and SE flows; and (d)
western sites (from the western Mediterranean to Israel), which
depended on W and SW flows.

(iv) There were 3 spatial classes that had higher variability in SY than
observed for rainfall and runoff: (a) northern sites, characterized
by N and NE flows, (b) eastern sites, characterized by E flows, and
(c) western sites, characterized by W and SW flows.

This study confirms that Mediterranean dynamics are highly vari-
able due to geographical and atmospheric factors: atmospheric patterns
provide meaningful information toward understanding the spatial
variations in the Mediterranean, identifying regions with different be-
havior, most of which are influenced by the relief. Finally, the analysis
of the spatial variability of the relationships of runoff and sediment
yield with weather types and the database generated would be useful
tools presenting practical applicability for designing regional water and
soil conservation measures (e.g. combined with meteorological fore-
casting).
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